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AIlI&ract-We study the stress distribution in a simple bar constituted by two isotropic, homogeneous,
linear elastic constituents. We discuss three constitutive assumptions on the interacting force: namely, it is
purely elastic; it is elastic-perfectly plastic; it has a brittle response.

I. INTRODUCTION
In recent years a certain interest towards the theory of interacting continua has been registered.
For instance, Green and Naghdi[l] derived the constitutive equations for a mixture of two
Newtonian compressible fluids by using the general principles of continuum mechanics;
Crochet and Naghdi[2] considered the non-linear constitutive equations for the flow of a fluid
through an elastic solid. Later. Green and Steel [3] gave the explicit form of the constitutive
equations for a mixture of two non-linear elastic solids. Aron[4] studied the restrictions
imposed on the linear constitutive equations of a mixture of two elastic solids by the
requirement that the corresponding boundary-value problems are well posed.

A different approach was employed by Tiersten and Jahanmir[S], who regarded the mixture
of two elastic solids as a composite of interpenetrating continua, in which the motion of a
particle of the combined continuum could be finite while the relative motion of each of the
constituents was infinitesimal.

It must be observed, however, that the linear constitutive equations for a two-constituent
isotropic composite derived by Green and Steel [3] and those obtained by Tiersten and
Jahanmir[S] are not completely equivalent.

Interacting continua can be used as a macroscopic model of composite material, that is a
material composed by a number of distinct constituents with different physical properties. The
macroscopic equations clearly do not consider the detailed motion of each individual com­
ponent. Nevertheless they give certain types of information, as, for instance, the actual bond
force between the constituents.

In this paper I consider a two-constituent composite material which behaves in the following
way. Each constituent is linear elastic, but the bond force may either be elastic-perfectly plastic
or elastic-perfectly brittle. Constitutive equations of this kind are appropriate to describe the
response of many composite materials under high stresses. While the individual components of
the solid mixture are relatively strong, the connections between different constituents are
relatively weak.

In order to obtain simple, but definite results, I only consider the distributions of stresses
and displacements in a rectilinear bar of a two-constituent composite material under simple
traction. Equations similar to the ones given below were derived by Jahanmir and Tiersten[6] in
studying the one dimensional load transfer in fiber reinforced composite materials. It is possible
in this case to get exact solutions for the considered boundary value problems. The region
where the interacting forces change their nature can also be determined.

A rather unexpected result is that the macroscopic relationship between the tensile force
and the corresponding displacement reproduces the behaviour of the elastic-plastically harden­
ing material.

2. BASIC EQUATIONS

The bar under consideration consists of two distinct isotropic linear elastic continua.
Initially, both continua occupy the same region and, hence, have the same material coordinate
X ranging over a closed, finite interval 0~ X ~ I. After deformation, a generic particle of the
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first continuum takes the position,
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(2.1)

and a generic particle of the second continuum takes the position

(2.2)

We assume that both these mappings are one-to-one and differentiable as often as required.
Let us introduce the longitudinal displacement of each constituent defined by

(2.3)

and assume that U1 and U2 are small enough compared to / so that terms in UI and U2 of orders greater
than one are negligible,

If the gradients of UI and U2 are also small, the corresponding strains have the forms

(2.4)

On assuming that each component is homogeneous, the stresses 0'1 and 0'2 are related to the
strains by constitutive equations

(2.5)

where Eh ., • ,E. are elastic moduli. It is known (see Aron[3]) that these moduli must satisfy
the conditions

(2.6)

Since the constituents interact, let us denote by ml == -m2 the interacting forces. These
forces are not given in advance, but they depend on the kinematic variables through appropriate
constitutive equations. We shall consider some particular forms of these constitutive equations
in the following.

Stresses and interacting forces are related by balance equations. Neglecting all non-linear
terms and ignoring the external body forces, these equations become

Using the constitutive equations (2.5) we obtain

E1u'i+ E)U2+ ml =0, }
E2U2 +E.u'i +m2 =0, in 0< X < /.

(2.7)

(2,8)

As far the boundary conditions, we consider the bar placed in one of the two types of
loading devices: the uniform device, in which the bar is fixed at one end and loaded at the other
by a force P acting on both constituents; the sinate device, in which the bar is fixed at one end
and loaded at the other by a force P acting only on one of the constituents.

3. THE PURELY ELASTIC BEHAVIOR

We first consider the simplest situation in which the interacting force ml = -m2 is purely
elastic. It is then known that a linear constitutive equation compatible with objectivity and
isotropy has the form
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ml = -m2 = -a( lt l - U2),

where g is a constant (a > 0).
Substituting (3.1) into (2.8) we obtain

E.u'j +E3U2 - a(ul - U2) = 0, }
E2U2+ E.u'j+ a(ul- U2) = 0 inO< X < I.
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(3.1)

(3.2)

We now solve (3.2) in the case of uniform and single device.
With soft device the bar is fixed at one end and loaded at the other by a normal force P

burdening on the two constituents (Fig. I). The boundary conditions are

UI(O) =U2(0) =0,

u.(/) = U2(1),

P
u.<!) +u2(1) = A'

(3.3)

where A is the cross section of the bar.
Since (3.2) is a system of ordinary differential equations with constant coefficients it is easy

to find its general solution

u. = B +CX +D(E2+E3)cosh aX +E(E2+E3)sinh aX,}
U2 =B +CX - D(E. +E4)cosh aX - E(E1+E4) sinh aX,

where B, C, D, E are constants and a is given by

.and a is real since a is positive and (2.6) imply

E. +E2+E3+E4 >0,

4E1E2> (E3+E4)2 = El +2E3E4+Ei ~ 4E3E4•

(3.4)

(3.5)

In order to determine B, C, D, E we use the boundary conditions (3.3). The first two of (3.3)
give

B=D=O,

and the others

E=O,

P
C(E1+E3)+ C(E2+E4) =A'

A~~ft~~~'~
I.. I .1 B

Fia, I.

•p
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whence we derive
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We thus conclude that, in the bar, we have constant stresses of the type

(3.6)

and an interacting force ml =-m2 vanishing everywhere.
We then consider the single device in which the total force at the end B (Fig. 2) is absorbed

by the first constituent. The corresponding boundary conditions assumes the form

u.(O) = U2(0) = 0, )

CTJ(l) =~, CT2(l) = o.
(3.7)

Or using again the general solution (3.4) we determine the constants B, C, D, E with the new
boundary conditions (3.7). An easy calculation yields

B=D=O,

and

CTI(l) =E1uj(l) +E3U2(/) =C(E) +E3)

p
+a cosh a/(E)E2- E3E4)E = A'

CT2(l) = E2u2(/) +E4uj(l) = C(E2+E4)

- a cosh a/(E1E2- E3E4)E = O.

Solving this system we obtain

Once these constants are known, a simple substitution into (2.5) gives

(3.9)

SinQIe device

Fig. 2.

•p
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while the interacting force, derived from (3.1), is

415

(3.10)

It is interesting to observe that mI =- m2 attains its maximum in absolute value at the
loaded end of the bar (Fig. 3). This distribution of the interacting force was also found by
HovF3ard [7].

1-:-'~_t~
Fig. 3.

4. THE ELASTIC PLASTIC BEHAVIOR

Formula (3.10) shows that the interacting force tends to increase (in absolute value) close to
one end. We wish now to introduce the additional assumption that this force satisfies a
condition of the type

(4.1)

where mo is a prescribed value. The individual constituents are instead indefinitely elastic.
In case of uniform device the interacting force vanishes and therefore plasticisation cannot

occur. We thus consider the case of single device and denote by E(O < E< I) the point of
transition between the elastic and the plastic region. Since ml is a monotone function it is
reasonable to conjecture that this point is unique.

In the elastic region 0< X < E the solution still has the form (3.4). In the plastic region
E< X < I, the interacting force has the value

ml = -m2 = -mo = const.

and the equilibrium equations become

Etu1+E3ui- mo=O, }
E2ui+E4u1 +mo =0 in E< X < [' .

The general solution of this system is

ut=F+GX+!!!R E;+E3 X;
2 EIE; - E3E4 '

-H LX mo E\+E4 v2'
U; - + - 2 E\E;-E

3
E/"'- mE<X < I,

where F, G, H, I are constants.

(4.2)

(4.3)
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The eight constants B, C, D, E, F, G. H, I and the position ~ must be determined by the
boundary conditions

and the continuity conditions at ~

uM+) = uM-),

U2(r) = uM-),

u,(r) = uM-),

U2(r) =U2(C-),

m.(C-) = -mo.

Since from (4.3) and (2.5) we have

(4.4)

(4.5)

(4.6)

we can write (4.4) by using (3.4) and (4.6). A long, but easy calculation, enables us to obtain

B=D=O,

G= ~+~ 1+ ~ P
E,E2 - E)E4 mo E,E2 - E)E4 A'

I = E, +E4 mol _ E4 P
E.E2 -E)E4 E,E2 -E)E4 A'

and the substitution of (4.7) into (4.6) yields

p
u,(X) = -mo(l- X)+:A'

U2(X) = mo(l- X) in ~ < X < I.

The continuity conditions (4.5) then become

C(E2+E4) - Ea cosh a~(E.E2 - E)£4) = mo(l - ~),

aE(E. +E2+E) +E4) sinh a~ = mo·

(4.7)

(4.8)

(4.9)

In order to solve (4.9) we suppose for the moment of having found a value of ~ such that
(4.9) is compatible.

Once ~ is known, we obtain C and E from (4.9»), (4.9)4:
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c= p ,
(EI +E2+E3+E.)A

E - I [. (E2+E.)P (L t)]
- a cosh af(EJE2 - E3E.) (E, +E2+E3+E.)A mo - ~ ;

and from (4.9)10 (4.9h we calculate

With these values of the constants we find that the interacting force is
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_ a(E1 +§+ E3+E.) [ (E2+E.)P _ miL - f)]sinh aX
ml = -m2 = a cosh af{E.E2 - E3E.) (EI +E2+E3+E.)A

- mo in f ~ X ~ L. in 0~ X < f,

It only remains to evaluate f from the condition of continuity

On rewriting this equations in the form

we immediately see that it admits only one positive solution, which confirms our conjecture on
the uniqueness of the point of transition. It may be interesting to observe that, if, for f =I in
(4.10), we find

the bar does not plasticise at any point and the solution is like (3.4).
The diagram of -mJ(X) is qualitatively represented in Fig. 3.

S. THE ELASTIC-BRITTLE BEHAVIOR

Let us now assume that the interacting force exhibits a brittle behavior of the following
type. It is purely elastic as far as ml =-ml, in absolute value, is not greater than a given value
mOt but it falls suddenly to zero at the points at which it would exceed, in absolute value, the
bound Ifto. This behavior can be mathematically descnbed by the following equation

(5.1)

Since in the case of uniform loading device the interacting force is identically zero, we only
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consider the single device and denote by 1)(0 $ 1) $ /) the point of transition between the elastic
and the non-reacting region.

In this region the equilibrium equations are

E1u'{+ E)u'2 = 0, }
E2u'2+ E4u'{=Oin 1) < X < / '

and the corresponding solution is

ul=K+LX, }
U2 =M +NX in 1) < X < / '

(5.2)

(5.3)

where K, L, M, N are constants.
Since in the elastic region 0 $ X < 7/ the solution is of the form (3.4) we must determine the

eight constants B, C, D, E, K, L, M, N by the boundary conditions (4.4) and the continuity
conditions, which are like (4.5) with ~ replaced by 7/.

On using (5.3) and (2.5) we obtain

Ut(X) = ElL +E)N, }
U2(X) = E2N +E4L in 7/ < X < / .

The (4.4)1> (4.4h give

B=D=O,

and (4.4h, (4.4)4 yield

E,L+ E)N =~,)

E2N +E4L=0,

whence we derive

that is,

UI(X) =~, U2(X) =°in 7/ < X < /.

The continuity conditions assume the form

(5.4)

(5.5)

(5.6)

(5.7)

C7/ +E(E2+E) sinh a7/ = K +L7/,

C7/ - E(E) +E4) sinh a7/ =M +N7/,

P
C(E1+E) +Ea cosh a7/(E1E2 - E)E4) = A'

C(E2 +E4) - Ea cosh a7/(E.E2 - E)E4) = 0,

aE(E) +E2+E) +E4) sinh a7/ = mo·

Let us suppose, as before, that there is an 7/ for which (5.7) is compatible. From (5.7h, (5.7)4
we find C and E:
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c= P
(EI +£2 +£3 +E4)A .

E= (E2+E.)P
a cosh all(E.E2 - E3E4)(E1+E2+E3+E4)A'

and from (5.7).. (5.7h we have:

K = [1/ +tanh a.,,(E2+E3)(E2+E4) 1/E2(£, +£2 +E3+E4)] x P ,
a(E1E2 - E3E.) E1E2 - E3E4 (E. +E2+E3+E4}A

L =[1/ - tanh a.,,(E2+E.)(E1+E4) +."E2(EI +E2+E3+E.)] x P .
(l +a1/)(E.E2 - E3E.) E.E2 - E3E4 (EI +E2+E3+E.)A

The interacting force is
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m,=-m,=(
Oin1/<X:-::;/.

In order to evaluate. 1/ we use (5.7)5:

0(E2+E.)P sinh a1/ _
a cosh a1/(E1E2 - E3E4}A - mo·

This equation can be written as

Since, by virtue of the constitutive assumptions, the r.h.s. is positive, the only possible solution
is positive. If, however, it happens that

the transition point falls beyond I and the bar remains elastic.
The diagram of -m.(X) is reproduced in Fig. 3.

6. FORCE·DISPLACEMENT DIAGRAMS

The three types of behavior studied above can be expressively compared by examining the
dependence of the external load P, on the displacement ul(/) of the first contituent at the end B
(Fig. 2).

If the interacting force is indefinitely elastic, we can find u.(I) from (3.4)•. Using (3.8) and
solving (3.4). with respect to P we obtain

(6.1)

This equation represents a straight line and its diagram is represented in Fig. 4.
When the interactina force behaves plastically, the relationship between P and "t(/) is given

by (4.3)•. On giving the constants their values and rearranging the terms, we obtain
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Fig. 4.

Elastic· brittle

u,l/)

In this equation, for P < /~mOa(EIE2 - E)E4A}/a(E2+E4} tanh a/A = Po, ~ is identically equal to /
and the bar behaves elastically. When, instead, P overcomes the point of first plasticisation the
diagram is no longer linear since edepends on P. For P ranging from P =Po to infinity, e
describes monotonically the intervall ~ e> O. The graph of (6.2) is qualitatively represented in
Fig. 4.

Finally, consider the brittle behavior. Performing the customary substitutions on (5.3}l we
obtain

(6.3)

where 11 = / for P < Po. When P, overcoming this value, tends to infinity the value of 11 varies
monotonically from l to zero. The corresponding graph, represented in Fig. 4, remains under
the curve (6.2).

However, an unexpected property is that in the limit, for eand 11 tending to zero, both these
curves have the same derivative

(6.4)

This derivative is clearly smaller than the ratio PIUI(/) of the elastic case.
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